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Numerical solution of flows that are partially bounded by a freely moving bound-
ary is of great importance in practical applications such as ship hydrodynamics.
The usual method for solving steady viscous free-surface flow subject to gravi-
tation is alternating time integration of the kinematic condition, and the Navier—
Stokes equations subject to the dynamic conditions, until steady state is reached.
This paper shows that this time integration approach is often inefficient. It pro-
poses an efficient iterative method for solving the steady free-surface flow problem.
The new method relies on a different but equivalent formulation of the free-surface
flow problem, involving a so-called quasi free-surface condition. The convergence
behavior of the new method is shown to be asymptotically mesh-width indepen-
dent. Numerical results are presented for two-dimensional flow over an obstacle in
a channel. The results confirm the mesh-width independence of the convergence
behavior, and comparison of the numerical results with measurements shows good
agreement. @© 2001 Elsevier Science

Key Wordsnumerical solution methods; free-surface flows; incompressible Navier—
Stokes equations.

1. INTRODUCTION

The numerical solution of flows that are partially bounded by a freely moving boundary
of greatimportance in ship hydrodynamics [1, 6, 8, 13], hydraulics, and many other practi
applications, such as coating technology [16, 17]. In ship hydrodynamics, an important e
of application is the prediction of the wave pattern that is generated by the ship at forw
speed in still water. This wave generation is responsible for a substantial part of the ship’
sistance, and therefore, it should be minimized by a proper hull form design. Computatic
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methods play an important role in this design process. Most computational tools that
currently in use for solving gravity-subjected free-surface flows around a surface-pierc
body rely on a potential flow approximation. Present developments primarily concern
solution of the free-surface Navier—Stokes (or RANS) flow problem.

For time-dependent free-surface flows, generally there is no essential difference in
treatment of the free surface between numerical methods for potential flow or Navi
Stokes flow. Typically, the solution of the flow equations and the adaptation of the fr
boundary are separated. Each time step begins with computing the flow field using
dynamic conditions imposed at the free surface. Next, the free surface is adjusted thrc
the kinematic condition, employing the newly computed velocity field.

For steadyfree-surface flows, however, such a conformity of approaches for viscous ¢
inviscid flow cannot be observed. For instance in ship hydrodynamics, whereas dedic
techniques have been developed for solving the free-surface potential flow problems (
e.g., [15]), methods for Navier—Stokes flow usually continue the aforementioned trans
process until a steady state isreached (see, e.g., [1, 6]). However, this time integration me
is often computationally inefficient. In general, the convergence to steady state is retarde
slowly attenuating transient surface-gravity waves. Moreover, the separate treatment o
flow equations and the kinematic condition yields a restriction on the allowable time st
Owing to the specific transient behavior of free-surface flows and the time-step restricti
the performance of the time integration method deteriorates rapidly with decreasing i
width. In practical computations, tens of thousands of time steps are often required, rende
the time integration approach prohibitively expensive in actual design processes.

Several approaches have been suggested to improve the efficiency of time-integre
methods (e.g., pseudo-time integration [8] and quasi-steady methods [22]). It appears
these approaches indeed improve the efficiency, but do not essentially improve the asy
totic convergence behavior of the time-integration method.

Alternative solution methods for steady free-surface Navier—Stokes flow exist, but tt
have not been widely applied in the field of ship hydrodynamics. In the field of coatil
technology successive approximation techniques are often employed, in particular kiner
iteration and dynamic iteration [17]. Kinematic iteration imposes the dynamic conditio
at the free surface and uses the kinematic condition to displace the boundary. Dyne
iteration imposes the kinematic and the tangential dynamic conditions at the free sur
and uses the normal dynamic condition to adjust the boundary position. However,
convergence behavior of both iteration schemes depends sensitively on parameters i
problem (see, e.g., [5, 19]). A method that avoids the deficiencies of the aforementio
iterative methods, is Newton iteration of the full equation set[17]. The positions of the (fre
surface) grid nodes are then added as additional unknowns and all equations, includin
free-surface conditions, are solved simultaneously. An objection to this method is t
simultaneous treatment of all equations is infeasible for problems with many unknow
such as three-dimensional problems and problems requiring sharp resolution of boun
layers. Finally, the free-surface flow problem can be reformulated into an optimal-shz
design problem, which can then in principle be solved efficiently by the adjoint optimizati
method. A problem with this approach is its complexity: although much progress has b
made in the formulation of adjoint equations for problems from fluid dynamics, includir
the Navier—Stokes equations [9], setting up the adjoint method remains involved. Moreo
efficiency is only obtained if proper preconditioning is applied [20, 21], and constructir
the preconditioner for the free-surface Navier—Stokes flow problem is intricate.
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The current work presents an iterative method for efficiently solving steady free-surfe
Navier—Stokes flow problems. Although our interest is the previously outlined ship hydi
dynamics application, it is anticipated that the method is also applicable to other gravi
dominated steady viscous free-surface flows at high Reynolds numbers, such as occu
instance, in hydraulics. The proposed method is analogous to the method for solving ste
free-surface potential flow problems presented in Ref. [15]. The method alternatingly sol
the steady Navier—Stokes equations with a so-called quasi free-surface condition impc
at the free surface and adjusts the free surface using the computed solution. The quasi
surface condition ensures that the disturbance induced by the subsequent displaceme
the boundary is negligible. Each surface adjustment then yields an improved approxima
to the actual free-boundary position.

The contents of the paper are organized as follows. In Section 2 the equations gover
incompressible, viscous free-surface flow are stated and the quasi free-surface cond
is derived. Section 3 proves that the usual time integration approach is generally inept
solving steady free-surface flows. Section 4 outlines the iterative solution method and
amines its convergence behavior. Numerical experiments and results for a two-dimensi
test case are presented in Section 5. The application to actual ship-wave computations
progress and will be reported in a sequel. Section 6 contains concluding remarks.

2. GOVERNING EQUATIONS

2.1. Incompressible Viscous Flow

An incompressible, viscous fluid flow subject to a constant gravitational force is cons
ered. Although only steady solutions are of interest, for the purpose of analysis the equat
are considered in time-dependent form.

The fluid occupies an open, time-dependent domgiic RY (d = 2, 3), which is en-
closed by the free bounda,, and a fixed boundarg)),\S,. Positions irk9 are identified
by their horizontal coordinategy, .. ., X4_1) and a vertical coordinatg with respect to the
Cartesian base vectoss, .. ., e5_1 andj, respectively. The origin is located in the undis-
turbed free surfacép, and the gravitational acceleratiog, acts in the negative vertical
direction. We consider free surfaces that can be represented by a so-called height-func
i.e., S, = {(x, n(x, t))}. The height-functiom is assumed to be a smooth function of the
horizontal coordinates and time (see Fig. 1 for an illustration).

The distinguishing parameters of the viscous free-surface flow problem are the Fro
number, Fr= U/./g¢, and the Reynolds number, RepU¢/u, with U an appropriate
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FIG. 1. Schematic illustration of the free-surface flow problem.
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reference velocityg the gravitational acceleratiof a reference length, andthe dynamic
viscosity of the fluid. The fluid density is assumed to be constant. The state of the flov
is then characterized by the (nondimensionalized) fluid velogity vy, t) and pressure
p(x, y, t). Incompressibility of the fluid implies that the velocity field is solenoidal:

dvv=0, (x,y)eV,t>0. (1a)

Conservation of momentum in the fluid is described by the Navier—Stokes equations.
pressure is separated into a hydrodynamic compaopamd a hydrostatic contribution as
p(x, y,t) = (X, y,t) — Fr-2y. Because the gradient of the hydrostatic pressure and tl
gravitational force cancel, the Navier—Stokes equations for a gravity-subjected incompr
ible fluid read

d . .
8—¥+d|vvv+V<p—d|vr(v)=O, X, y) €eV,,t >0, (1b)
wherert (V) is the viscous stress tensor for an incompressible Newtonian fluid,
T(v) = Re (V) + (VV)7). (1c)

Our primary interest is in turbulent flows. We consider the Reynolds averaged Navi
Stokes (RANS) equations, supplemented with a turbulence model that is based on ¢
viscosity. For our purpose, the RANS equations are essentially the same as the Na
Stokes equations, with the important difference being that the RANS equations have ste
solutions even at the envisaged high Reynolds numbers.

2.2. Free-Surface Conditions

Free-surface flows are essentially two-phase flows, of which the properties of the ¢
tiguous bulk fluids are such that their mutual interaction at the interface can be ignor
For an elaborate discussion of two-phase flows, see, for example, Refs. [2] and [18].
free-surface conditions follow from the general interface conditions and the assumpti
that both density and viscosity of the adjacent fluid vanish at the interface and, furtherm
that the interface is impermeable. Here it is moreover assumed that interfacial stresse:
be ignored, which is a valid assumption in the practical applications envisaged.

On the free surface, the fluid satisfies a kinematic conditiondadghamic conditions.
Impermeability of the free surface is expressed by the kinematic condition

%_,_V.V(n_y)zo, xX,y) €S, t>0. (2a)

Supposing that the viscous contribution to the normal stress at the free surface is neglig
continuity of stresses at the interface requires that the pressure vanish at the free sur
This results in the normal dynamic condition

p—Frp=0 (x,y)eS,t>0. (2b)

The requirement that the tangential stress components vanish at the free surface is expr
by thed — 1 tangential dynamic conditions

t.t(v)-n=0, (X,y)eS,t>0. (2¢c)
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Heret'(i = 1,...,d — 1) are orthogonal unit tangent vectors3p andn denotes the unit
normal vector taS,,.

One may note that the number of free-surface conditions for the viscous free-surface 1
problem isd + 1. The incompressible Navier—Stokes equationgdmequired boundary
conditions. Hence, the number of free-surface conditions is indeed one more than the nur
of required boundary conditions.

2.3. Quasi Free-Surface Condition

A fundamental problem in analyzing and computing free-surface flow problems is t
interdependence of the state variablesmd p and their spatial domain of definition through
the free-surface conditions. This problem can be avoided by deriving a condition that hold
good approximation on a fixed boundary in the neighborhood of the actual free boundary.
refer to such a condition ascqmasi free-surface conditiobecause the qualitative solution
behavior of the initial boundary value problem with this condition imposed is similar to th
of the free-boundary problem, but the boundary does not actually move. A suitable gt
free-surface condition for the free-surface Navier—Stokes flow problem is derived belov

LetS, denote the actual free surface, as defined before. In a similar manner, a nearby f
boundaryS, = {(x, 6(x))} is introduced, withd (x) a smooth function oby. We require
thatS, be close to the actual free surface in such a manner that

S, D) =nXx1) —0(X) ®3)

is small and sufficiently smooth. In particular, foralt 0,6 mustsatisfy|s||s, + [|Vélls, +
18t]ls, <€, for somee « 1. Here| - ||, is a suitable norm on the approximate boundary

Assuming thap andv can be extended smoothly beyond the boundarifaylor expansion
in the neighborhood a$; yields for p andv at the actual free surface

P(X, n(X, 1), 1) = p(X, B(X), 1) + 8(X, 1)j - VP, (X), t) + O(€?), (4a)
VX, n(X, 1), 1) = v(X, 0(X),t) + (X, t)j - VV(X, 8(X), t) + O(ez). (4b)

The normal dynamic condition (2b) demands that the left-hand side of Eq. (4a) vani
Hence, the elevation of the free surface can be expressed in terms of the pressure ai
gradient at the approximate surface:

P, 8(x), 1)

2
VP 600.0) + O(€9). (5)

nx,t) =6(x) —
To obtain arO(e?) accurate quasi free-surface condition (i.e.(x@?) approximation of
the conditions ab,), n andv in the kinematic condition (2a) can be replaced by Egs. (5) an
(4b), respectively. The resulting condition is, however, intractable. Instead, two additiol
assumptions concerningand p are introduced to obtain a convenient quasi free-surfac
condition. The first assumption is that the vertical derivative of the pressure is domina
by the hydrostatic component;Fr—2. Generally, this assumption is valid for waves of
moderate steepness. Specifically, we suppose that a cosgtant exists such that for all
t>0,

11+ Frj - Vpls, < op. (6)
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The second assumption is that the vertical derivative isfsmall, in such a manner that a
constanby, <« 1 exists with the property that, for all> O,

lji-VVvis, < ov. (7)

Under this assumption, the velocity at the actual free boungiéxyy (x, t), t), can be ac-
curately approximated by the velocity at the fixed boundaty, 6 (x), t). By Eq. (4b), the
error in the approximation is oni@ (¢oy). In Ref. [3] it is shown that the velocity deviation
through the free-surface boundary layer is proportional to the surface curvaturedRe 1
Moreovergy in Eq. (7) increases with the wave steepness. Therefore, the assumptch
is valid if the steepness and curvature of the free-surface waves are moderate and if |
sufficiently large.

Under the above assumptions a convenient quasi free-surface condition can be der
Substitution of the hydrostatic approximation of the pressure gradient in Eq. (5) yields

p(x, 6(x), t)
—Fr?(1+ O(op))

nx,t) =06(x) — =0(X) + FrPpx, (), )(1+ O(op)).  (8)
The dynamic conditions (2b) and (4a) imply that= O(¢) on Sy. Hence, ignoring terms
O(€?, eop), the free-surface elevation is related to the hydrodynamic pressure at the
proximate boundary by

n(x,t) = 0(X) + FrPp(x, 6(X), t) = FrPp(x, 6(X), t). 9)

To transfer the kinematic condition (2a) to the approximate surfgce is replaced by
Eq. (9) ands onS, is replaced by onSy. The error thus introduced is on@(€?, eap, €oy).
Special care is required in expressing the gradient, dfecause Eqg. (9) relatesto ¢ on
the curvilinear surfacéy:

do dp e 36 dp (06 .
Vn=F - =FP| - +——)=FP(Vp+— [ — — . 10
1 dx <8x+ay8x> ( ¢+ y(ax J)) (10)

It then follows that

3 3

vV —y) = FP (—‘0 +V-V(p— Fr‘zy)>
at at

36

ad .
n Frza—;/;v- (E)x —J) +O(2 eop, o) =0, (11)
Using the kinematic condition (2a) and definition (3), the second term on the right-ha

side of Eq. (11) can be recast as
Frza—(pv~V(9—y)=Frza—¢v~V(n—8—y)=—Fr28—(p(v~V8+8) (12)
ay ay oy v
Owing to the smoothness éf the term in parenthesis is ju€i(e) and Eq. (12) is only
O(eop). The second term on the right-hand side of Eq. (11) can therefore be ignored. He!

it follows that

9
a—f FV-V(p—Fr2y)=0 (13)
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approximates the conditions at the bound&kyto O(e?, eap, €ay). This implies that
Eq. (13) is a quasi free-surface condition on any fixed boundary that is sufficiently close
the actual free surface, provided that Egs. (6) and (7) are fulfilled.

One may note that Eq. (13) is exactly satisfied at the actual free surface. Therefore,
quasi free-surface condition can replace either the kinematic condition (2a) or the nor
dynamic condition (2b) in the formulation of the free-surface conditions in Section 2.2.

The importance of the quasi free-surface condition is that the quasi free-surface fl
solution (i.e., the solution of the Navier—Stokes equations with Egs. (13) and (2¢) impose
afixed boundary in the neighborhood of the actual free surface) is an accurate approxime
of the actual free-surface flow solution. Because the tangential dynamic conditions
largely irrelevant to the shape of the free surface [3], it is anticipated that the change in
solution due to imposing Eq. (2c) &) instead ofS, is negligible. In that case, if Eq. (13)
holds atS,, then the free surface conditions (2b) and (2a) are satisfi@l¢é, eop, €oy)
at the boundary

{(x, FPp(X, O (X, ))}. (14)

Therefore, the solution of the quasi free-surface flow problem i©ést, cop, €oy) ap-
proximation to the solution of the free-surface flow problem. Moreover, (14) is an equa
accurate approximation of the actual free-surface position. One may note that (14) just
the normal dynamic condition to determine the position of the free surface.

3. TIME INTEGRATION METHODS

The most widely applied iterative method for solving gravity-dominated steady fre
surface Navier—Stokes flow is alternating time integration of the kinematic condition, a
the Navier—Stokes equations subject to the dynamic conditions, until steady state is reac
This section examines the computational complexity of this time integration method (..
the number of operations per grid point expended in the solution process).

The computational complexity of the time integration method depends on the physi
time that is required to reduce transient wave components in the initial estimate to
level of other errors in the numerical solution. The transient behavior of surface grav
waves therefore plays an essential part in the complexity analysis. This transient behavi
discussed in Sections 3.1 and 3.2. Next, the implications on the computational comple
are examined in Section 3.3.

3.1. Surface Gravity Waves

We consider the specific case of a small-amplitude disturbance of a uniform horizor
flow on adomain c RY of infinite horizontal extent and unit vertical extent. The domain i
bounded by the undisturbed free surf&ge= {(x, 0)} and arigid impermeable free-slip bot-
tomB = {(x, —1)}. The uniform flow velocity i@ = v, ..., v{’;. 0), with [v©@| = 1.
The above implies that the undisturbed fluid depth and flow velocity are designated as
erence length and velocity, respectively.

Suppose that a disturbance is generated in the flow, such that fos dithe resulting
surface-elevation satisfigg||s, + |Vnlls, + lntlls, < €, for some positive:. We assume
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that the corresponding perturbed free-surface flow solution can be written as

© 1
(;) X, ¥, t;€) = (VO ) +e€ (;%) X, y,t) + O(¢?), ase—>0. (15)

From Section 2.3 it follows that the solution of the quasi free-surface flow problevisn
an O(e?, €y, €oy) approximation of the actual free-surface flow, with andoy defined
by Egs. (6) and (7), respectively. However, Eq. (15) implies thaando, are of O(e).
Hence, the quasi free-surface flow solutioniis an O(e?) approximation to the actual
free-surface flow solution. Consequently, for sufficiently small and smooth perturbatic
the results on the behavior of the quasi free-surface flow solution apply immediately to
behavior of the actual free-surface flow solution.

Suppose that the disturbance can be written as a linear combination of horizontal Fou
modes exfik - x + iwt), with k € R4~ the wavenumber of the Fourier mode amils fre-
quency. Because the perturbed quasi free-surface flow problem is li@&rp it suffices
to consider a single mode. If the following Fourier mode is inserted for the perturbations
Eq. (15),

v(l)
L ikicosh(|k|(1+y))
v | oyt = ikg_1cosh(IK|(1+ y)) expiik - X + ioj (K1),  (16a)
o Kisinh(lkI(L+ )
o (=D'id(k)cosh(k|(1 +y))

wherew; (K) is either of the two roots of the dispersion relation,
wjk)=-vO k- (-Dlok), j=12 (16b)

and

@ (k) = \/Fr2|k|tanh(K]), (16c)

then the correspondingandg comply toO(e?) with the quasi free-surface flow problem,
except for the tangential dynamic conditions (2c), which yield

t.7(v)-n= Re‘leZikj [k|sinh(|K[) exp(ik - X + iw;j (K)1). a7

Because Eq. (17) ison® (¢ |k |3/Re)agk| — 0, the error is negligible for sufficiently smalll

k and large Re. Hence, Eq. (16a) accurately describes the behavior of smooth free-su
waves in a uniform horizontal flow at sufficiently high Reynolds numbers. The perturbatic
(16a) are called surface gravity waves. (For an elaborate discussion of surface gravity w
in potential flow see, e.g., Refs. [11, 12]).

3.2. Asymptotic Temporal Behavior

The asymptotic temporal behavior of surface gravity waves is determined by the asyi
totic properties of the Fourier integral of the modes (16a). The behavior of the integ
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transform fort — oo can be determined by means of the asymptotic expansion

/oc F (k) exp(ity (k) dk

0

= F(ko)y/ mﬁ,ﬁ exp(i [tw(ko) + %n sigm/f”<ko)D + 0™, (18)

with 8 a positive constant- (k) an analytic function, an#y a stationary point offr (k)
(i.e., ¥’ (ko) = 0). The expansion (18) requires thatk) be smooth in the neighborhood
of stationary points in the sense that the rati6(ko) /| (ko) |¥? is small (see Ref. [11]).
The method of stationary phase (sometimes called the method of steepest descent) ¢
used to prove (18) (see, e.g., Refs. [12, 25]).

The Fourier integral of Eq. (16a) can be evaluated fe¥ oo by introducing a suitable
coordinate transformation férand applying Eq. (18) recursively with respect to the trans
formed coordinates. Denoting lay(x, y, t) a component in Eq. (16a) and byK, y) its
Fourier transform, one obtains

o (X, ¥, 1) = & (Ko, Y)(2r/t) " P/?(detH (ko) explity (ko) +i¢) + O(e™™),  (19a)
ast — oo, where

(k) = k- X/t + wq(K), (19b)
and whereH (k) denotes its Hessian agds a multiple ofr /4 depending on the properties
of the Hessian (see also Ref. [24]). By Eqgs. (16b) and (16c), for fixaddt — oo, a

stationary poinkg of v (k) occurs when

D (k) Fr_1tanh|k| + |K|(1 — tanf? [k|) k; o
= —_— = v .
dk; 2./Tk[tanh[K] k| J

—1,...,d-1 (20

Assuming thav© is scaled such thav®| = 1, a sufficient and necessary condition for a
stationary point to exist is FEA(|k|) = 1, with

_ (tanh[k| + K| (1 — tant? |k))?
AllkD = 4|k | tanh|k| ' (1)

One can show that (|k|) is a bijection fronR, to (0,1]. Therefore, a single stationary point
exists if and only if Fr< 1 (i.e., for subcritical flows). This stationary point corresponds
to a wave of which the group velocity (see, e.g., Refs. [12, 24]) equals the flow veloci
Consequently, the energy associated with this wave remains at a fixed position and de
only owing to dispersion.

By Eq. (19a), at subcritical Froude numbers the asymptotic temporal behavior of |
surface-gravity waves (16) iR? is O(t®-9/2) ast — oo. In particular, surface grav-
ity waves attenuate ag/ J/t in R? and as 1t in R3. At supercritical Froude numbers, a
stationary point ofys (k) does not exist and the first term in Eqg. (19a) disappears. Tt
surface gravity waves then vanish exponentially as oo.
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3.3. Computational Complexity

Suppose the objective is to solve a steady free-surface flow problem using the t
integration method. The asymptotic temporal behavior of surface gravity waves can tl
be used to estimate the asymptotic computational complexity of the method.

Spatial discretization of the incompressible Navier—Stokes equations with appropr
boundary conditions on fixed boundaries and the free-surface conditions on the free bo
ary yields a discrete operatby,: Ay — By, with Ay, denoting the space of grid functions
on a grid with characteristic mesh-width The operatoL.y, is assumed to be stable and
pth order consistent (i.e., the discretization eregr,is O(hP) ash — 0).

Numerical time integration of the spatially discretized free-surface flow problem yield:
sequencef € An, n=0,1,2,....The grid-functiorg is a restriction of initial conditions
to the grid. Assuming the time step in the time integration methotlh be constanty
approximates the solution of the free-surface flow problem attimez. Suppose that the
discretized free-surface flow problem has a unique solufioa A, and that the sequence
gp indeed approacheg; asnt — oo. The evaluation error is defined by

y" = |lan — o). (22)

If the aim is to approximate the solution of the steady free-surface flow problem,
is sufficient to reduce the evaluation error to the level of the discretization error. Furtl
reduction does not yield an essential improvement in the approximation obtitenuum
solution anyway. By (19a), the asymptotic behavior of the evaluation error at subcriti
Froude numbers is

y" = O((n)*??), asnt — cc. (23)

For an example of this convergence behavior in actual computations, see the nume
experiments on fine grids in Ref. [22]. From Eq. (23) it follows that< ¢, requires

n=0(h??®9z=1)  ash - 0. (24)

Equation (24) implies an increase of the number of time steps to reach steady state w
the required tolerance. This is particularly manifest for high-order discretizations farge
and low spatial dimensiord(= 2).

An additional complication is that usually the allowable time step decreaseh \iitime
integration of free-surface flow problems typically proceeds in two alternating steps: (T
integrate the incompressible Navier—Stokes, subject to the dynamic conditions at the
surface and appropriate boundary conditions at fixed boundaries; and (T2) integrate
kinematic condition to adjust the free-surface position, using the solution from (T1).

Owing to this separate treatment and the hyperbolic character of the kinematic condit
stability of the numerical time integration method requires that the time step comply w
a CFL condition;t « h.

In summary, Eq. (24) and the CFL condition imply that the number of time steps requit
to reachy” < ey, is O(h~+2P/(@=D)y Assuming that the computational complexity of the
time integration method is proportional to the number of time steps, at subcritical Frot
numbers the computational complexity is

W = O(h~(+2P/@-10)  ash — 0, (25)
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Equation (25) implies a severe increase in the computational expensesexseases.
For example, in the typical case of a second-order discretization of the three-dimensic
problem, if the mesh width is halved, the required computational vperkgrid point
increases by a factor of 8.

4. EFFICIENT SOLUTION OF STEADY FREE-SURFACE FLOWS

From Section 3 it is evident that the usual time integration approach is inept for solvi
steady free-surface flows at subcritical Froude numbers. In this section we present an
cient iterative solution method for gravity-subjected steady free-surface flows. The mett
is outlined in Section 4.1. The convergence properties of the method and its computatic
complexity are examined in Sections 4.2 and 4.3.

4.1. lterative Solution Method

From the results in Section 2.3, it follows that an accurate approximation to the fre
surface flow and to the free-surface position can be obtained by the following operatior
(11) For a given initial boundang, solve {, ¢) from

divw + Vg — div rl(v) =0 } x.y) eV, (262)
divv=20

B(v, p) =bXx,y), (X,y)€dV\S, (26b)
t.z(v)-n=0

V-Vo—Frij.v= 0}’ .y €8s, (260)

where Eg. (26b) represents boundary conditions on the fixed boundary.
(12) Use the solution of (11) to adjust the bounda&yo

{(X, y +FrPp(x, ¥): (X, y) € S} (27)

Note the appearance of the quasi free-surface condition in its steady form in Eq. (2
The modified boundary approximates the actual free surface more accurately than doe
initial boundary, provided that the conditions discussed in Section 2.3 are fulfilled. Hence
is anticipated that the solution to the free-surface flow problem can be obtained by iterat
the operations (11) and (12).

If S is the actual free surface, then the normal dynamic condition is satisfiedp(i.e.,
vanishes orf). In that casen || Vp, and Eq. (26c) implies that the solution of Egs. (26)
complies with the kinematic condition and the tangential dynamic conditions. Hence, og
ation (I11) thenyields the free-surface flow. Moreover, the normal dynamic condition ensu
that the surface adjustment in (I12) vanishes, so that the solution of the free-surface f
problem is indeed a fixed point of the iteration.

Itis important to notice the absence of time-dependent terms in (11) and (12). Therefc
the slow decay of transient waves described in Section 3 is irrelevant to the convergenc
the iterative process. The actual convergence properties of (11)—(12) are examined belc
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4.2. Convergence

The convergence behavior of the iterative method (11)—(12) can be conveniently exe
ined by rephrasing the free-surface flow problem as an optimal-shape design problen
general characteristic of free-boundary problems is that the number of free-boundary «
ditions is one more than the number of boundary conditions required by the govern
boundary-value problem. A free-boundary problem can therefore be reformulated into
equivalent optimal-shape design problem of finding the boundary that minimizes a nc
of the residual of one of the free-surface conditions, subject to the boundary-value prob
with the remaining free-surface conditions imposed.

To obtain an optimal-shape design formulation of the steady free-surface flow proble
the cost functionak is defined by

E(S. (v, p) = /‘S IP(x. )| dS. (28)

Assuming that Eq. (26) is well posed for all surfacem a space of admissible boundaries
O, and thatO contains the actual free surface, the free-surface flow problem is equival
to the optimal-shape design problem

gnig{E(S, (v, p)): (v, p) satisfieg26)}. (29)

Notice that problem (29) is in fact a constrained optimization problem, with the bounde
value problem (26) serving as a constraint eng).

The optimal-shape design formulation of the free-surface flow problem allows conveni
assessment of the convergence properties of the iterative method (11)—(12). Each itere
adjusts the approximation to the free-surface position. Convergence of the iterative meth
ensured if each surface adjustment yields a reduction in the cost functional (28). Moreo
the reduction of the cost functional between successive iteractions is a measure of
efficiency of the method.

To determine the effect of a surface adjustment, consider the boui@ag the modified
boundary

Seo = {(X, Y) + €a(X, Y)j : (X, y) € S}, (30)

for a suitably smooth functior independent ot on S. The modified boundary is the
boundary of a domaiw,,, which approache¥ ase — 0. Following Ref. [14],V and)/.,
are embedded in a bounded saind it is assumed that for al C ¢ with S € O, a solution
for Eq. (26) can be extended smoothly beyond the boundary, sovthak i6 well defined
everywhere ire.

The displacement of the boundary fr&#ro S,, induces a disturbance in the solution of
Eq. (26). Denoting byv, p)., the solution of Eq. (26) oi.,, theinduced disturbances
defined by

1
V. P)g = M =((V, Plea — (V. P))- (31)

Taylor expansion of the cost functional then yields

E(Seas (¥, p>w>=/|p+e<aj VP P+ cu) dS + O(D), ase — 0. (32)
S
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In Eq. (32), the functiom,, : S — R accounts for the change in the surface area fréhod
dS... Ignoring termD(¢?), the modified boundar§,, improves ors if a positive constant
¢ < 1 exists such that

/S|p+e<aj.v|o+ p;>|<1+eua>d55;[g|p|ds. (33)

If condition (33) holds for some < 1, then the modification of the boundary fraghto
S Yields a reduction in the cost functional. The smallest positive constant that satis!
condition (33) is called the contraction number. Clearly, a small contraction number impl
a successful surface modification.

Operation (12) in the iterative procedure gives a correction in the boundary positi
ea = F?p. In that case, the value of the cost functional corresponding to the modifi
surface is bounded by

E (S, (V, p>m>s/|p||1+ Fr? -Vp|(1+eua>d8+/|ep;|ds. (34)
S S

Hence, the contraction numbgiof the iterative process (11)—(12) is bounded by

Js lep,1dS
<op+ 22— — + 0O(e), 35
£=0 JspldS © (35)

with o, defined by Eq. (6). From condition (35) it follows thatiindo, are indeed small,
then the induced disturbance determines the convergence behavior of the iterative me

To establish convergence of (I11)—(12), it remains to be seen whether the induced dis
bancep], is indeed small. In Section 2.3 it was shown that the quasi free-surface conditi
(13) approximates the conditions at a fixed boundary in the neighborhood of the free suri
to O(e2, eop, €oy). Hence, displacing this condition frogto S,,, yields no greater distur-
bance than that. In Ref. [3] it is shown that the tangential dynamic conditions are larg
irrelevant to the shape of the free surface. Conversely, the induced disturbance due tc
forcing the tangential dynamic conditions&instead ofS,,, can be neglected. Therefore,
the contraction number of the iterative method (11)—(12) is estimated as

;‘ = O(E, Up, Gv). (36)

4.3. Computational Complexity

Equation (36) provides an upper bound for the contraction number of the iterative mett
(11)—(12). One may note that if the approximate boundary is sufficiently close to the act
free surfaced small), then Eq. (36) depends on properties of the continuum solution on
Therefore, if the free-surface flow problem is solved numerically, the convergence beha
of the iterative method is asymptotically independent of mesh width.

The iteration must be continued until the pressure defect at the free surface (28) has |
reduced to the level of the spatial discretization error. Further reduction does not essent
improve the approximation of theontinuumsolution anyway. Each iteration reduces the
pressure defect at the free surface by a fagtdtherefore, the number of iterationsmust
satisfy

¢" = 0(hP). 37)
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This implies thain = O(plogh/log¢). Assuming that the computational complexity of
the iterative method is proportional to the number of iterations, the following estimate
the computational complexity is obtained:

W = O(logh). (38)

Hence, the efficiency of the iterative method (11)—(12) deteriorates only moderately w
decreasing mesh width.

To eliminate the remaining wedkdependence of the computational complexity, neste
iteration can be employed. Generally, an iterative solution method is used to solve
boundary-value problem (26) in step (I11) of the algorithm. The nesting involves the L
of the solution from the previous iteration as an initial estimate for the solution proce
Because this initial estimate becomes increasingly accurate, the cost of performing
reduces as the iteration progresses. In particular, assuming that the cost of solving Eq.
is proportional to the pressure defect at the free surface, the amount of work that is requ
to achieve Eq. (37) is

W:w+§w+;2w+-~-+;“wgliw, (39)
with w denoting the cost of solving Eq. (26) initially. Observe that the computation
complexity (39) is indeed entirely independent of the mesh width.

5. NUMERICAL EXPERIMENTS AND RESULTS

The method is tested for subcritical flow over an obstacle in a channel of unit depth
Fr = 0.43 and Re= 1.5 x 10°, with the undisturbed fluid depth and the undisturbed flow
velocity at the free surface assigned as the reference length and velocity, respectively.
geometry of the obstacle is

yx) = -1+ g%X(X—L)Z, 0O<x<L, (40)
with H and L the (nondimensionalized) height and length of the obstacle, respective
ChoosingH = 0.2 andL = 2, the setup is in agreement with that in Ref. [5]. At the botton
boundary no-slip boundary conditions are imposed. A boundary-layer velocity profile
accordance with the experiments from Ref. [5] is imposed at the inflow boundary.

The test case withl = 0.2 displays large-amplitude waves that exhibit typical nonlinea
effects, such as sharp wave crests and wavelength reduction. In adéitien).15 is
considered. This test case displays waves more in accordance with linear wave theory
e.g., Refs. [11, 12)).

The experiments are performed on grids with horizontal mesh widta2—5, 2-6. The
number of grid cells in the vertical direction is 70 and exponential grid stretching is appli
to resolve the boundary layer at the bottom. Furthermore, the grid is coarsened towarc
inflow and outflow boundaries to reduce reflections. A typical example of a grid used in
numerical experiments is presented in Fig. 2. The RANS equations, closed with an ec
viscosity model owing to Cebeci and Smith [7], and the boundary conditions are discreti:
and solved by the method described in Ref. [10]. After each evaluation, the grid is aday
using vertical stretching. An initial estimate of the solution on the adapted grid is sub.
quently generated by linear interpolation from the solution on the previous grid. Details
the discretization method and the setup of the numerical experiments can be found in Ref
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0 2 4 6

FIG. 2. Example of a grid used in the numerical experiments. The grid is coarsened for illustration purpos:

Figure 3 shows the wave profile obtained in successive iterationsifer0.2. The
initial estimate (zeroth iterate) is just the undisturbed free surface. One may note t
the first iterate already displays a qualitatively correct wave profile. This confirms that 1
guasi free-surface flow solution is an accurate approximation of the actual free-surface
solution. A converged solution is obtained in less than 10 iterations. Owing to the decrea:s
computational cost of each iteration (refer to Section 4.3), the entire computation is j
two to three times as expensive as the corresponding fixed domain problem with symm
boundary conditions at the undisturbed surface.

Figure 4 displays the pressure defect at the free surface after consecutive iterations.
results confirm convergence of the method. Hog 0.15, the average contraction number
is¢ ~ 0.15andthe convergence behavior is indeed independangdter several iterations
the contraction number increases. However, this is entirely due to the fact that the q
free-surface flow problem (26) is solved only by approximation. If the tolerance on tl
residual of Eqg. (26) is reduced (i.e., if Eq. (26) is solved more accurately), then the origil
contraction number is recovered. Fér= 0.20, the average contraction number is: 0.45
for h =275 and¢ ~ 0.52 forh = 278, As a result of strong nonlinearity, the asymptotic
mesh-width independence of the convergence behavior is in this case not yet apparen

0.1
] 9 nal
5
0.05
] 1
= 0
n )
-0.05 1 \\/ \/
—0.1 0o 1 2 3 4 5

T

FIG. 3. Wave profile obtained after successive iteratidds=£ 0.2).
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FIG.4. Pressure defectatthe free surface versus the iteration number00.15,h = 2-5(0),h = 2-%(0),
andH = 0.20,h = 2°5(+), h = 275(<).

A detailed investigation of the convergence behavior of time integration methods for |
test case wittH = 0.20 is presented in Ref. [22]. Typically, the time integration methot
requires approximately fGurface adjustments to reduce the initial error by a factor of 1(
The presented method achieves this in approximately four iterations, for a similar set
of the numerical experiment.

Figure 5 compares the computed wave elevation with measurements from Ref. [5]
Ref. [5], a nondimensionalized amplituda = 4.5 x 10724+ 15% and wavelength

0.051

—0.051

-0.1 0 1 2 3 4 5

FIG.5. Computed wave elevation fér= 2-° (solid line) and measurements from Ref. [5] (markers only),
for H = 0.20. The obstacle is located in the interxa& [0, 2].
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A =110+ 10% are reported for the trailing wave. The trailing wave of the compute
wave elevation on the grid with = 278 displays amplitude = 6.5 x 10~ and wave-
lengthA = 1.11 Hence, the computed wavelength agrees well with the measurements. -
amplitude appears to be overestimated. However, the difference between the amplituc
the numerical results and of the experimental data is not unusual (see, e.g., Refs. [22, .
Observe also that the difference in the amplitude of the first wave and the second way
correctly predicted.

6. CONCLUSION

The usual time-integration method for solving steady free-surface Navier—Stokes fl
problems was shown to be inefficient owing to the specific transient behavior of surfa
gravity waves and a CFL condition on the allowable time step.

Motivated by the demand for efficient computational methods in practical applicatior
we proposed a new iterative-solution method. The method alternatingly solves the ste
Navier—Stokes equations with a quasi free-surface condition imposed at the free surf
and adjusts the free surface using the computed solution and the normal dynamic condi

Examination of the convergence properties of the iterative method revealed that
method uses the quasi free-surface condition to ensure that the disturbance induce
the displacement of the boundary is small. It was shown that the convergence behavic
the method is asymptotically independent of the mesh width. The asymptotic computatic
complexity of the iterative method deteriorates only moderately with decreasing mesh wic
Mesh-width independence of the computational complexity can be achieved by mean
nested iteration.

Numerical results were presented for two-dimensional flow over an obstacle in a chan
For the presented test cases, a converged solution was obtained in at most 10 iterations
numerical results agree well with measurements. The numerical experiments confirmed
the convergence behavior of the method is asymptotically independent of mesh width.

We believe that the proposed method will be useful in ship hydrodynamics, hydrauli
and other fields of application in which the efficient computation of steady free-surfa
flows at high Reynolds number is required.
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