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Numerical solution of flows that are partially bounded by a freely moving bound-
ary is of great importance in practical applications such as ship hydrodynamics.
The usual method for solving steady viscous free-surface flow subject to gravi-
tation is alternating time integration of the kinematic condition, and the Navier–
Stokes equations subject to the dynamic conditions, until steady state is reached.
This paper shows that this time integration approach is often inefficient. It pro-
poses an efficient iterative method for solving the steady free-surface flow problem.
The new method relies on a different but equivalent formulation of the free-surface
flow problem, involving a so-called quasi free-surface condition. The convergence
behavior of the new method is shown to be asymptotically mesh-width indepen-
dent. Numerical results are presented for two-dimensional flow over an obstacle in
a channel. The results confirm the mesh-width independence of the convergence
behavior, and comparison of the numerical results with measurements shows good
agreement. c© 2001 Elsevier Science

Key Words:numerical solution methods; free-surface flows; incompressible Navier–
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1. INTRODUCTION

The numerical solution of flows that are partially bounded by a freely moving boundary is
of great importance in ship hydrodynamics [1, 6, 8, 13], hydraulics, and many other practical
applications, such as coating technology [16, 17]. In ship hydrodynamics, an important area
of application is the prediction of the wave pattern that is generated by the ship at forward
speed in still water. This wave generation is responsible for a substantial part of the ship’s re-
sistance, and therefore, it should be minimized by a proper hull form design. Computational
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methods play an important role in this design process. Most computational tools that are
currently in use for solving gravity-subjected free-surface flows around a surface-piercing
body rely on a potential flow approximation. Present developments primarily concern the
solution of the free-surface Navier–Stokes (or RANS) flow problem.

For time-dependent free-surface flows, generally there is no essential difference in the
treatment of the free surface between numerical methods for potential flow or Navier–
Stokes flow. Typically, the solution of the flow equations and the adaptation of the free
boundary are separated. Each time step begins with computing the flow field using the
dynamic conditions imposed at the free surface. Next, the free surface is adjusted through
the kinematic condition, employing the newly computed velocity field.

Forsteadyfree-surface flows, however, such a conformity of approaches for viscous and
inviscid flow cannot be observed. For instance in ship hydrodynamics, whereas dedicated
techniques have been developed for solving the free-surface potential flow problems (see,
e.g., [15]), methods for Navier–Stokes flow usually continue the aforementioned transient
process until a steady state is reached (see, e.g., [1, 6]). However, this time integration method
is often computationally inefficient. In general, the convergence to steady state is retarded by
slowly attenuating transient surface-gravity waves. Moreover, the separate treatment of the
flow equations and the kinematic condition yields a restriction on the allowable time step.
Owing to the specific transient behavior of free-surface flows and the time-step restriction,
the performance of the time integration method deteriorates rapidly with decreasing mesh
width. In practical computations, tens of thousands of time steps are often required, rendering
the time integration approach prohibitively expensive in actual design processes.

Several approaches have been suggested to improve the efficiency of time-integration
methods (e.g., pseudo-time integration [8] and quasi-steady methods [22]). It appears that
these approaches indeed improve the efficiency, but do not essentially improve the asymp-
totic convergence behavior of the time-integration method.

Alternative solution methods for steady free-surface Navier–Stokes flow exist, but they
have not been widely applied in the field of ship hydrodynamics. In the field of coating
technology successive approximation techniques are often employed, in particular kinematic
iteration and dynamic iteration [17]. Kinematic iteration imposes the dynamic conditions
at the free surface and uses the kinematic condition to displace the boundary. Dynamic
iteration imposes the kinematic and the tangential dynamic conditions at the free surface
and uses the normal dynamic condition to adjust the boundary position. However, the
convergence behavior of both iteration schemes depends sensitively on parameters in the
problem (see, e.g., [5, 19]). A method that avoids the deficiencies of the aforementioned
iterative methods, is Newton iteration of the full equation set [17]. The positions of the (free-
surface) grid nodes are then added as additional unknowns and all equations, including the
free-surface conditions, are solved simultaneously. An objection to this method is that
simultaneous treatment of all equations is infeasible for problems with many unknowns,
such as three-dimensional problems and problems requiring sharp resolution of boundary
layers. Finally, the free-surface flow problem can be reformulated into an optimal-shape
design problem, which can then in principle be solved efficiently by the adjoint optimization
method. A problem with this approach is its complexity: although much progress has been
made in the formulation of adjoint equations for problems from fluid dynamics, including
the Navier–Stokes equations [9], setting up the adjoint method remains involved. Moreover,
efficiency is only obtained if proper preconditioning is applied [20, 21], and constructing
the preconditioner for the free-surface Navier–Stokes flow problem is intricate.
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The current work presents an iterative method for efficiently solving steady free-surface
Navier–Stokes flow problems. Although our interest is the previously outlined ship hydro-
dynamics application, it is anticipated that the method is also applicable to other gravity-
dominated steady viscous free-surface flows at high Reynolds numbers, such as occur, for
instance, in hydraulics. The proposed method is analogous to the method for solving steady
free-surface potential flow problems presented in Ref. [15]. The method alternatingly solves
the steady Navier–Stokes equations with a so-called quasi free-surface condition imposed
at the free surface and adjusts the free surface using the computed solution. The quasi free-
surface condition ensures that the disturbance induced by the subsequent displacement of
the boundary is negligible. Each surface adjustment then yields an improved approximation
to the actual free-boundary position.

The contents of the paper are organized as follows. In Section 2 the equations governing
incompressible, viscous free-surface flow are stated and the quasi free-surface condition
is derived. Section 3 proves that the usual time integration approach is generally inept for
solving steady free-surface flows. Section 4 outlines the iterative solution method and ex-
amines its convergence behavior. Numerical experiments and results for a two-dimensional
test case are presented in Section 5. The application to actual ship-wave computations is in
progress and will be reported in a sequel. Section 6 contains concluding remarks.

2. GOVERNING EQUATIONS

2.1. Incompressible Viscous Flow

An incompressible, viscous fluid flow subject to a constant gravitational force is consid-
ered. Although only steady solutions are of interest, for the purpose of analysis the equations
are considered in time-dependent form.

The fluid occupies an open, time-dependent domainVη ⊂ Rd (d = 2, 3), which is en-
closed by the free boundary,Sη, and a fixed boundary,∂Vη\Sη. Positions inRd are identified
by their horizontal coordinates (x1, . . . , xd−1) and a vertical coordinatey, with respect to the
Cartesian base vectorse1, . . . , ed−1 andj , respectively. The origin is located in the undis-
turbed free surfaceS0, and the gravitational acceleration,g, acts in the negative vertical
direction. We consider free surfaces that can be represented by a so-called height-function,
i.e.,Sη = {(x, η(x, t))}. The height-functionη is assumed to be a smooth function of the
horizontal coordinates and time (see Fig. 1 for an illustration).

The distinguishing parameters of the viscous free-surface flow problem are the Froude
number, Fr≡ U/

√
g`, and the Reynolds number, Re≡ ρU`/µ, with U an appropriate

FIG. 1. Schematic illustration of the free-surface flow problem.
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reference velocity,g the gravitational acceleration,` a reference length, andµ the dynamic
viscosity of the fluid. The fluid densityρ is assumed to be constant. The state of the flow
is then characterized by the (nondimensionalized) fluid velocityv(x, y, t) and pressure
p(x, y, t). Incompressibility of the fluid implies that the velocity field is solenoidal:

div v = 0, (x, y) ∈ Vη, t > 0. (1a)

Conservation of momentum in the fluid is described by the Navier–Stokes equations. The
pressure is separated into a hydrodynamic componentϕ and a hydrostatic contribution as
p(x, y, t) = ϕ(x, y, t)− Fr−2y. Because the gradient of the hydrostatic pressure and the
gravitational force cancel, the Navier–Stokes equations for a gravity-subjected incompress-
ible fluid read

∂v
∂t
+ div vv+∇ϕ − div τ(v) = 0, (x, y) ∈ Vη, t > 0, (1b)

whereτ(v) is the viscous stress tensor for an incompressible Newtonian fluid,

τ(v) = Re−1((∇v)+ (∇v)T ). (1c)

Our primary interest is in turbulent flows. We consider the Reynolds averaged Navier–
Stokes (RANS) equations, supplemented with a turbulence model that is based on eddy
viscosity. For our purpose, the RANS equations are essentially the same as the Navier–
Stokes equations, with the important difference being that the RANS equations have steady
solutions even at the envisaged high Reynolds numbers.

2.2. Free-Surface Conditions

Free-surface flows are essentially two-phase flows, of which the properties of the con-
tiguous bulk fluids are such that their mutual interaction at the interface can be ignored.
For an elaborate discussion of two-phase flows, see, for example, Refs. [2] and [18]. The
free-surface conditions follow from the general interface conditions and the assumptions
that both density and viscosity of the adjacent fluid vanish at the interface and, furthermore,
that the interface is impermeable. Here it is moreover assumed that interfacial stresses can
be ignored, which is a valid assumption in the practical applications envisaged.

On the free surface, the fluid satisfies a kinematic condition andd dynamic conditions.
Impermeability of the free surface is expressed by the kinematic condition

∂η

∂t
+ v · ∇(η − y) = 0, (x, y) ∈ Sη, t > 0. (2a)

Supposing that the viscous contribution to the normal stress at the free surface is negligible,
continuity of stresses at the interface requires that the pressure vanish at the free surface.
This results in the normal dynamic condition

ϕ − Fr−2η = 0, (x, y) ∈ Sη, t > 0. (2b)

The requirement that the tangential stress components vanish at the free surface is expressed
by thed − 1 tangential dynamic conditions

t i · τ(v) · n = 0, (x, y) ∈ Sη, t > 0. (2c)
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Here,t i (i = 1, . . . , d − 1) are orthogonal unit tangent vectors toSη, andn denotes the unit
normal vector toSη.

One may note that the number of free-surface conditions for the viscous free-surface flow
problem isd + 1. The incompressible Navier–Stokes equations inRd required boundary
conditions. Hence, the number of free-surface conditions is indeed one more than the number
of required boundary conditions.

2.3. Quasi Free-Surface Condition

A fundamental problem in analyzing and computing free-surface flow problems is the
interdependence of the state variablesv andp and their spatial domain of definition through
the free-surface conditions. This problem can be avoided by deriving a condition that holds to
good approximation on a fixed boundary in the neighborhood of the actual free boundary. We
refer to such a condition as aquasi free-surface condition, because the qualitative solution
behavior of the initial boundary value problem with this condition imposed is similar to that
of the free-boundary problem, but the boundary does not actually move. A suitable quasi
free-surface condition for the free-surface Navier–Stokes flow problem is derived below.

LetSη denote the actual free surface, as defined before. In a similar manner, a nearby fixed
boundarySθ = {(x, θ(x))} is introduced, withθ(x) a smooth function onS0. We require
thatSθ be close to the actual free surface in such a manner that

δ(x, t) ≡ η(x, t)− θ(x) (3)

is small and sufficiently smooth. In particular, for allt > 0,δ must satisfy‖δ‖Sθ
+ ‖∇δ‖Sθ

+
‖δt‖Sθ

≤ ε, for someε¿ 1. Here‖ · ‖Sθ
is a suitable norm on the approximate boundary.

Assuming thatp andv can be extended smoothly beyond the boundarySθ , Taylor expansion
in the neighborhood ofSθ yields for p andv at the actual free surface

p(x, η(x, t), t) = p(x, θ(x), t)+ δ(x, t)j · ∇ p(x, θ(x), t)+ O(ε2), (4a)

v(x, η(x, t), t) = v(x, θ(x), t)+ δ(x, t)j · ∇v(x, θ(x), t)+ O(ε2). (4b)

The normal dynamic condition (2b) demands that the left-hand side of Eq. (4a) vanish.
Hence, the elevation of the free surface can be expressed in terms of the pressure and its
gradient at the approximate surface:

η(x, t) = θ(x)− p(x, θ(x), t)

j · ∇ p(x, θ(x), t)
+ O(ε2). (5)

To obtain anO(ε2) accurate quasi free-surface condition (i.e., anO(ε2) approximation of
the conditions atSθ ), η andv in the kinematic condition (2a) can be replaced by Eqs. (5) and
(4b), respectively. The resulting condition is, however, intractable. Instead, two additional
assumptions concerningv and p are introduced to obtain a convenient quasi free-surface
condition. The first assumption is that the vertical derivative of the pressure is dominated
by the hydrostatic component,−Fr−2. Generally, this assumption is valid for waves of
moderate steepness. Specifically, we suppose that a constantσp¿ 1 exists such that for all
t > 0,

‖1+ Fr2 j · ∇ p‖Sθ
≤ σp. (6)
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The second assumption is that the vertical derivative ofv is small, in such a manner that a
constantσv¿ 1 exists with the property that, for allt > 0,

‖j · ∇v‖Sθ
≤ σv. (7)

Under this assumption, the velocity at the actual free boundary,v(x, η(x, t), t), can be ac-
curately approximated by the velocity at the fixed boundary,v(x, θ(x), t). By Eq. (4b), the
error in the approximation is onlyO(εσv). In Ref. [3] it is shown that the velocity deviation
through the free-surface boundary layer is proportional to the surface curvature and 1/

√
Re.

Moreover,σv in Eq. (7) increases with the wave steepness. Therefore, the assumptionσv¿ 1
is valid if the steepness and curvature of the free-surface waves are moderate and if Re is
sufficiently large.

Under the above assumptions a convenient quasi free-surface condition can be derived.
Substitution of the hydrostatic approximation of the pressure gradient in Eq. (5) yields

η(x, t) = θ(x)− p(x, θ(x), t)

−Fr−2(1+ O(σp))
= θ(x)+ Fr2 p(x, θ(x), t)(1+ O(σp)). (8)

The dynamic conditions (2b) and (4a) imply thatp = O(ε) onSθ . Hence, ignoring terms
O(ε2, εσp), the free-surface elevation is related to the hydrodynamic pressure at the ap-
proximate boundary by

η(x, t) = θ(x)+ Fr2 p(x, θ(x), t) = Fr2ϕ(x, θ(x), t). (9)

To transfer the kinematic condition (2a) to the approximate surfaceSθ , η is replaced by
Eq. (9) andv onSη is replaced byv onSθ . The error thus introduced is onlyO(ε2, εσp, εσv).
Special care is required in expressing the gradient ofη, because Eq. (9) relatesη to ϕ on
the curvilinear surfaceSθ :

∇η = Fr2
dϕ

dx
= Fr2

(
∂ϕ

∂x
+ ∂ϕ

∂y

∂θ

∂x

)
= Fr2

(
∇ϕ + ∂ϕ

∂y

(
∂θ

∂x
− j
))

. (10)

It then follows that

∂η

∂t
+ v · ∇(η − y) = Fr2

(
∂ϕ

∂t
+ v · ∇(ϕ − Fr−2y)

)
+ Fr2

∂ϕ

∂y
v ·
(

∂θ

∂x
− j
)
+ O(ε2, εσp, εσv) = 0. (11)

Using the kinematic condition (2a) and definition (3), the second term on the right-hand
side of Eq. (11) can be recast as

Fr2
∂ϕ

∂y
v · ∇(θ − y) = Fr2

∂ϕ

∂y
v · ∇(η − δ − y) = −Fr2

∂ϕ

∂y
(v · ∇δ + δt ). (12)

Owing to the smoothness ofδ, the term in parenthesis is justO(ε) and Eq. (12) is only
O(εσp). The second term on the right-hand side of Eq. (11) can therefore be ignored. Hence,
it follows that

∂ϕ

∂t
+ v · ∇(ϕ − Fr−2y) = 0 (13)
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approximates the conditions at the boundarySθ to O(ε2, εσp, εσv). This implies that
Eq. (13) is a quasi free-surface condition on any fixed boundary that is sufficiently close to
the actual free surface, provided that Eqs. (6) and (7) are fulfilled.

One may note that Eq. (13) is exactly satisfied at the actual free surface. Therefore, the
quasi free-surface condition can replace either the kinematic condition (2a) or the normal
dynamic condition (2b) in the formulation of the free-surface conditions in Section 2.2.

The importance of the quasi free-surface condition is that the quasi free-surface flow
solution (i.e., the solution of the Navier–Stokes equations with Eqs. (13) and (2c) imposed at
a fixed boundary in the neighborhood of the actual free surface) is an accurate approximation
of the actual free-surface flow solution. Because the tangential dynamic conditions are
largely irrelevant to the shape of the free surface [3], it is anticipated that the change in the
solution due to imposing Eq. (2c) atSθ instead ofSη is negligible. In that case, if Eq. (13)
holds atSθ , then the free surface conditions (2b) and (2a) are satisfied toO(ε2, εσp, εσv)

at the boundary

{(x, Fr2ϕ(x, θ(x, t)))}. (14)

Therefore, the solution of the quasi free-surface flow problem is anO(ε2, εσp, εσv) ap-
proximation to the solution of the free-surface flow problem. Moreover, (14) is an equally
accurate approximation of the actual free-surface position. One may note that (14) just uses
the normal dynamic condition to determine the position of the free surface.

3. TIME INTEGRATION METHODS

The most widely applied iterative method for solving gravity-dominated steady free-
surface Navier–Stokes flow is alternating time integration of the kinematic condition, and
the Navier–Stokes equations subject to the dynamic conditions, until steady state is reached.
This section examines the computational complexity of this time integration method (i.e.,
the number of operations per grid point expended in the solution process).

The computational complexity of the time integration method depends on the physical
time that is required to reduce transient wave components in the initial estimate to the
level of other errors in the numerical solution. The transient behavior of surface gravity
waves therefore plays an essential part in the complexity analysis. This transient behavior is
discussed in Sections 3.1 and 3.2. Next, the implications on the computational complexity
are examined in Section 3.3.

3.1. Surface Gravity Waves

We consider the specific case of a small-amplitude disturbance of a uniform horizontal
flow on a domainV ⊂ Rd of infinite horizontal extent and unit vertical extent. The domain is
bounded by the undisturbed free surfaceS0 = {(x, 0)}and a rigid impermeable free-slip bot-
tomB = {(x,−1)}. The uniform flow velocity isv(0) = (v

(0)
1 , . . . , v

(0)
d−1, 0), with |v(0)| = 1.

The above implies that the undisturbed fluid depth and flow velocity are designated as ref-
erence length and velocity, respectively.

Suppose that a disturbance is generated in the flow, such that for allt > 0 the resulting
surface-elevation satisfies‖η‖S0 + ‖∇η‖S0 + ‖ηt‖S0 ≤ ε, for some positiveε. We assume
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that the corresponding perturbed free-surface flow solution can be written as(
v
ϕ

)
(x, y, t; ε) =

(
v(0)

0

)
+ ε

(
v(1)

ϕ(1)

)
(x, y, t)+ O(ε2), asε → 0. (15)

From Section 2.3 it follows that the solution of the quasi free-surface flow problem onV is
an O(ε2, εσp, εσv) approximation of the actual free-surface flow, withσp andσv defined
by Eqs. (6) and (7), respectively. However, Eq. (15) implies thatσp andσv are of O(ε).
Hence, the quasi free-surface flow solution onV is anO(ε2) approximation to the actual
free-surface flow solution. Consequently, for sufficiently small and smooth perturbations
the results on the behavior of the quasi free-surface flow solution apply immediately to the
behavior of the actual free-surface flow solution.

Suppose that the disturbance can be written as a linear combination of horizontal Fourier
modes exp(ik · x+ iωt), with k ∈ Rd−1 the wavenumber of the Fourier mode andω its fre-
quency. Because the perturbed quasi free-surface flow problem is linear toO(ε2), it suffices
to consider a single mode. If the following Fourier mode is inserted for the perturbations in
Eq. (15),

v
(1)
1
...

v
(1)
d−1

v
(1)
d

ϕ(1)


(x, y, t) =


ik1cosh(|k|(1+ y))

...

ikd−1cosh(|k|(1+ y))

|k|sinh(|k|(1+ y))

(−1) j i8(k)cosh(|k|(1+ y))

 exp(ik · x+ iω j (k)t), (16a)

whereω j (k) is either of the two roots of the dispersion relation,

ω j (k) = −v(0) · k − (−1) j 8(k), j = 1, 2, (16b)

and

8(k) =
√

Fr−2|k|tanh(|k|), (16c)

then the correspondingv andϕ comply toO(ε2) with the quasi free-surface flow problem,
except for the tangential dynamic conditions (2c), which yield

t i · τ(v) · n = Re−1ε2ikj |k|sinh(|k|) exp(ik · x+ iω j (k)t). (17)

Because Eq. (17) is onlyO(ε|k|3/Re)as|k| → 0, the error is negligible for sufficiently small
k and large Re. Hence, Eq. (16a) accurately describes the behavior of smooth free-surface
waves in a uniform horizontal flow at sufficiently high Reynolds numbers. The perturbations
(16a) are called surface gravity waves. (For an elaborate discussion of surface gravity waves
in potential flow see, e.g., Refs. [11, 12]).

3.2. Asymptotic Temporal Behavior

The asymptotic temporal behavior of surface gravity waves is determined by the asymp-
totic properties of the Fourier integral of the modes (16a). The behavior of the integral



128 VAN BRUMMELEN, RAVEN, AND KOREN

transform fort →∞ can be determined by means of the asymptotic expansion∫ ∞
0

F(k) exp(itψ(k)) dk

= F(k0)

√
2π

t |ψ ′′(k0)| exp

(
i

[
tψ(k0)+ 1

4
π signψ ′′(k0)

])
+ O(e−βt ), (18)

with β a positive constant,F(k) an analytic function, andk0 a stationary point ofψ(k)

(i.e., ψ ′(k0) = 0). The expansion (18) requires thatψ(k) be smooth in the neighborhood
of stationary points in the sense that the ratioψ ′′′(k0)/|ψ ′′(k0)|3/2 is small (see Ref. [11]).
The method of stationary phase (sometimes called the method of steepest descent) can be
used to prove (18) (see, e.g., Refs. [12, 25]).

The Fourier integral of Eq. (16a) can be evaluated fort →∞ by introducing a suitable
coordinate transformation fork and applying Eq. (18) recursively with respect to the trans-
formed coordinates. Denoting byσ(x, y, t) a component in Eq. (16a) and by ˆσ(k, y) its
Fourier transform, one obtains

σ(x, y, t) = σ̂ (k0, y)(2π/t)(d−1)/2(detH(k0))
−1/2 exp(itψ(k0)+ iζ )+ O(e−βt ), (19a)

ast →∞, where

ψ(k) = k · x/t + ωα(k), (19b)

and whereH(k) denotes its Hessian andζ is a multiple ofπ/4 depending on the properties
of the Hessian (see also Ref. [24]). By Eqs. (16b) and (16c), for fixedx and t →∞, a
stationary pointk0 of ψ(k) occurs when

∂8(k)

∂kj
= Fr−1 tanh|k| + |k|(1− tanh2 |k|)

2
√|k| tanh|k|

kj

|k| = v
(0)
j , j = 1, . . . , d − 1. (20)

Assuming thatv(0) is scaled such that|v(0)| = 1, a sufficient and necessary condition for a
stationary point to exist is Fr−23(|k|) = 1, with

3(|k|) = (tanh|k| + |k|(1− tanh2 |k|))2

4|k| tanh|k| . (21)

One can show that3(|k|) is a bijection fromR+ to (0,1]. Therefore, a single stationary point
exists if and only if Fr≤ 1 (i.e., for subcritical flows). This stationary point corresponds
to a wave of which the group velocity (see, e.g., Refs. [12, 24]) equals the flow velocity.
Consequently, the energy associated with this wave remains at a fixed position and decays
only owing to dispersion.

By Eq. (19a), at subcritical Froude numbers the asymptotic temporal behavior of the
surface-gravity waves (16) inRd is O(t (1−d)/2) as t →∞. In particular, surface grav-
ity waves attenuate as 1/

√
t in R2 and as 1/t in R3. At supercritical Froude numbers, a

stationary point ofψ(k) does not exist and the first term in Eq. (19a) disappears. The
surface gravity waves then vanish exponentially ast →∞.



STEADY FREE-SURFACE NAVIER–STOKES FLOW 129

3.3. Computational Complexity

Suppose the objective is to solve a steady free-surface flow problem using the time
integration method. The asymptotic temporal behavior of surface gravity waves can then
be used to estimate the asymptotic computational complexity of the method.

Spatial discretization of the incompressible Navier–Stokes equations with appropriate
boundary conditions on fixed boundaries and the free-surface conditions on the free bound-
ary yields a discrete operatorLh:Ah 7→ Bh, with Ah denoting the space of grid functions
on a grid with characteristic mesh-widthh. The operatorLh is assumed to be stable and
pth order consistent (i.e., the discretization error,εh, is O(hp) ash→ 0).

Numerical time integration of the spatially discretized free-surface flow problem yields a
sequenceqn

h ∈ Ah, n = 0, 1, 2, . . .. The grid-functionq0
h is a restriction of initial conditions

to the grid. Assuming the time step in the time integration method,τ , to be constant,qn
h

approximates the solution of the free-surface flow problem at timet = nτ . Suppose that the
discretized free-surface flow problem has a unique solutionq∗h ∈ Ah, and that the sequence
qn

h indeed approachesq∗h asnτ →∞. The evaluation error is defined by

γ n = ∥∥qn
h − q∗h

∥∥. (22)

If the aim is to approximate the solution of the steady free-surface flow problem, it
is sufficient to reduce the evaluation error to the level of the discretization error. Further
reduction does not yield an essential improvement in the approximation of thecontinuum
solution anyway. By (19a), the asymptotic behavior of the evaluation error at subcritical
Froude numbers is

γ n = O
(
(nτ)(1−d)/2

)
, asnτ →∞. (23)

For an example of this convergence behavior in actual computations, see the numerical
experiments on fine grids in Ref. [22]. From Eq. (23) it follows thatγ n ≤ εh requires

n = O
(
h2p/(1−d)τ−1

)
, ash→ 0. (24)

Equation (24) implies an increase of the number of time steps to reach steady state within
the required tolerance. This is particularly manifest for high-order discretizations (largep)
and low spatial dimension (d = 2).

An additional complication is that usually the allowable time step decreases withh. Time
integration of free-surface flow problems typically proceeds in two alternating steps: (T1)
integrate the incompressible Navier–Stokes, subject to the dynamic conditions at the free
surface and appropriate boundary conditions at fixed boundaries; and (T2) integrate the
kinematic condition to adjust the free-surface position, using the solution from (T1).

Owing to this separate treatment and the hyperbolic character of the kinematic condition,
stability of the numerical time integration method requires that the time step comply with
a CFL condition,τ ∝ h.

In summary, Eq. (24) and the CFL condition imply that the number of time steps required
to reachγ n ≤ εh is O(h−(1+2p/(d−1))). Assuming that the computational complexity of the
time integration method is proportional to the number of time steps, at subcritical Froude
numbers the computational complexity is

W = O
(
h−(1+2p/(d−1))

)
, ash→ 0. (25)
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Equation (25) implies a severe increase in the computational expenses ash decreases.
For example, in the typical case of a second-order discretization of the three-dimensional
problem, if the mesh width is halved, the required computational workper grid point
increases by a factor of 8.

4. EFFICIENT SOLUTION OF STEADY FREE-SURFACE FLOWS

From Section 3 it is evident that the usual time integration approach is inept for solving
steady free-surface flows at subcritical Froude numbers. In this section we present an effi-
cient iterative solution method for gravity-subjected steady free-surface flows. The method
is outlined in Section 4.1. The convergence properties of the method and its computational
complexity are examined in Sections 4.2 and 4.3.

4.1. Iterative Solution Method

From the results in Section 2.3, it follows that an accurate approximation to the free-
surface flow and to the free-surface position can be obtained by the following operations.

(I1) For a given initial boundaryS, solve (v, ϕ) from

div vv+∇ϕ − div τ(v) = 0

div v = 0

}
, (x, y) ∈ V, (26a)

B(v, p) = b(x, y), (x, y) ∈ ∂V \ S, (26b)

ti · τ(v) · n = 0

v · ∇ϕ − Fr−2j · v = 0

}
, (x, y) ∈ S, (26c)

where Eq. (26b) represents boundary conditions on the fixed boundary.
(I2) Use the solution of (I1) to adjust the boundaryS to

{(x, y+ Fr2ϕ(x, y)) :(x, y) ∈ S}. (27)

Note the appearance of the quasi free-surface condition in its steady form in Eq. (26c).
The modified boundary approximates the actual free surface more accurately than does the
initial boundary, provided that the conditions discussed in Section 2.3 are fulfilled. Hence, it
is anticipated that the solution to the free-surface flow problem can be obtained by iterating
the operations (I1) and (I2).

If S is the actual free surface, then the normal dynamic condition is satisfied (i.e.,p
vanishes onS). In that case,n ‖ ∇ p, and Eq. (26c) implies that the solution of Eqs. (26)
complies with the kinematic condition and the tangential dynamic conditions. Hence, oper-
ation (I1) then yields the free-surface flow. Moreover, the normal dynamic condition ensures
that the surface adjustment in (I2) vanishes, so that the solution of the free-surface flow
problem is indeed a fixed point of the iteration.

It is important to notice the absence of time-dependent terms in (I1) and (I2). Therefore,
the slow decay of transient waves described in Section 3 is irrelevant to the convergence of
the iterative process. The actual convergence properties of (I1)–(I2) are examined below.
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4.2. Convergence

The convergence behavior of the iterative method (I1)–(I2) can be conveniently exam-
ined by rephrasing the free-surface flow problem as an optimal-shape design problem. A
general characteristic of free-boundary problems is that the number of free-boundary con-
ditions is one more than the number of boundary conditions required by the governing
boundary-value problem. A free-boundary problem can therefore be reformulated into the
equivalent optimal-shape design problem of finding the boundary that minimizes a norm
of the residual of one of the free-surface conditions, subject to the boundary-value problem
with the remaining free-surface conditions imposed.

To obtain an optimal-shape design formulation of the steady free-surface flow problem,
the cost functionalE is defined by

E(S, (v, p)) ≡
∫
S
|p(x, y)| dS. (28)

Assuming that Eq. (26) is well posed for all surfacesS in a space of admissible boundaries
O, and thatO contains the actual free surface, the free-surface flow problem is equivalent
to the optimal-shape design problem

min
S∈O
{E(S, (v, p)) :(v, p) satisfies(26)}. (29)

Notice that problem (29) is in fact a constrained optimization problem, with the boundary
value problem (26) serving as a constraint on (v, p).

The optimal-shape design formulation of the free-surface flow problem allows convenient
assessment of the convergence properties of the iterative method (I1)–(I2). Each iteration
adjusts the approximation to the free-surface position. Convergence of the iterative method is
ensured if each surface adjustment yields a reduction in the cost functional (28). Moreover,
the reduction of the cost functional between successive iteractions is a measure of the
efficiency of the method.

To determine the effect of a surface adjustment, consider the boundaryS and the modified
boundary

Sεα = {(x, y)+ εα(x, y)j : (x, y) ∈ S}, (30)

for a suitably smooth functionα independent ofε on S. The modified boundary is the
boundary of a domainVεα, which approachesV asε → 0. Following Ref. [14],V andVεα

are embedded in a bounded setε and it is assumed that for allV ⊂ ε with S ∈ O, a solution
for Eq. (26) can be extended smoothly beyond the boundary, so that (v, p) is well defined
everywhere inε.

The displacement of the boundary fromS toSεα induces a disturbance in the solution of
Eq. (26). Denoting by(v, p)εα the solution of Eq. (26) onVεα, the induced disturbanceis
defined by

(v, p)′α ≡ lim
ε→0

1

ε
((v, p)εα − (v, p)). (31)

Taylor expansion of the cost functional then yields

E(Sεα, (v, p)εα) =
∫
S
|p+ ε(αj · ∇ p+ p′α)|(1+ εµα) dS + O(ε2), asε → 0. (32)
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In Eq. (32), the functionµα :S 7→ R accounts for the change in the surface area from dS to
dSεα. Ignoring termsO(ε2), the modified boundarySεα improves onS if a positive constant
ζ < 1 exists such that∫

S
|p+ ε(αj · ∇ p+ p′α)|(1+ εµα) dS ≤ ζ

∫
S
|p| dS. (33)

If condition (33) holds for someζ < 1, then the modification of the boundary fromS to
Sεα yields a reduction in the cost functional. The smallest positive constant that satisfies
condition (33) is called the contraction number. Clearly, a small contraction number implies
a successful surface modification.

Operation (I2) in the iterative procedure gives a correction in the boundary position
εα = Fr2 p. In that case, the value of the cost functional corresponding to the modified
surface is bounded by

E(Sεα, (v, p)εα) ≤
∫
S
|p||1+ Fr2j · ∇ p|(1+ εµα) dS +

∫
S
|εp′α| dS. (34)

Hence, the contraction numberζ of the iterative process (I1)–(I2) is bounded by

ζ ≤ σp +
∫
S |εp′α| dS∫
S |p| dS

+ O(ε), (35)

with σp defined by Eq. (6). From condition (35) it follows that ifε andσp are indeed small,
then the induced disturbance determines the convergence behavior of the iterative method.

To establish convergence of (I1)–(I2), it remains to be seen whether the induced distur-
bancep′α is indeed small. In Section 2.3 it was shown that the quasi free-surface condition
(13) approximates the conditions at a fixed boundary in the neighborhood of the free surface
to O(ε2, εσp, εσv). Hence, displacing this condition fromS toSεα yields no greater distur-
bance than that. In Ref. [3] it is shown that the tangential dynamic conditions are largely
irrelevant to the shape of the free surface. Conversely, the induced disturbance due to en-
forcing the tangential dynamic conditions atS instead ofSεα can be neglected. Therefore,
the contraction number of the iterative method (I1)–(I2) is estimated as

ζ = O(ε, σp, σv). (36)

4.3. Computational Complexity

Equation (36) provides an upper bound for the contraction number of the iterative method
(I1)–(I2). One may note that if the approximate boundary is sufficiently close to the actual
free surface (ε small), then Eq. (36) depends on properties of the continuum solution only.
Therefore, if the free-surface flow problem is solved numerically, the convergence behavior
of the iterative method is asymptotically independent of mesh width.

The iteration must be continued until the pressure defect at the free surface (28) has been
reduced to the level of the spatial discretization error. Further reduction does not essentially
improve the approximation of thecontinuumsolution anyway. Each iteration reduces the
pressure defect at the free surface by a factorζ . Therefore, the number of iterationsn must
satisfy

ζ n = O(hp). (37)
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This implies thatn = O(p logh/logζ ). Assuming that the computational complexity of
the iterative method is proportional to the number of iterations, the following estimate of
the computational complexity is obtained:

W = O(logh). (38)

Hence, the efficiency of the iterative method (I1)–(I2) deteriorates only moderately with
decreasing mesh width.

To eliminate the remaining weakh-dependence of the computational complexity, nested
iteration can be employed. Generally, an iterative solution method is used to solve the
boundary-value problem (26) in step (I1) of the algorithm. The nesting involves the use
of the solution from the previous iteration as an initial estimate for the solution process.
Because this initial estimate becomes increasingly accurate, the cost of performing (I1)
reduces as the iteration progresses. In particular, assuming that the cost of solving Eq. (26)
is proportional to the pressure defect at the free surface, the amount of work that is required
to achieve Eq. (37) is

W = w + ζw + ζ 2w + · · · + ζ nw ≤ 1

1− ζ
w, (39)

with w denoting the cost of solving Eq. (26) initially. Observe that the computational
complexity (39) is indeed entirely independent of the mesh width.

5. NUMERICAL EXPERIMENTS AND RESULTS

The method is tested for subcritical flow over an obstacle in a channel of unit depth, at
Fr= 0.43 and Re= 1.5× 105, with the undisturbed fluid depth and the undisturbed flow
velocity at the free surface assigned as the reference length and velocity, respectively. The
geometry of the obstacle is

y(x) = −1+ 27

4

H

L3
x(x − L)2, 0≤ x ≤ L , (40)

with H and L the (nondimensionalized) height and length of the obstacle, respectively.
ChoosingH = 0.2 andL = 2, the setup is in agreement with that in Ref. [5]. At the bottom
boundary no-slip boundary conditions are imposed. A boundary-layer velocity profile in
accordance with the experiments from Ref. [5] is imposed at the inflow boundary.

The test case withH = 0.2 displays large-amplitude waves that exhibit typical nonlinear
effects, such as sharp wave crests and wavelength reduction. In addition,H = 0.15 is
considered. This test case displays waves more in accordance with linear wave theory (see,
e.g., Refs. [11, 12]).

The experiments are performed on grids with horizontal mesh widthsh = 2−5, 2−6. The
number of grid cells in the vertical direction is 70 and exponential grid stretching is applied
to resolve the boundary layer at the bottom. Furthermore, the grid is coarsened toward the
inflow and outflow boundaries to reduce reflections. A typical example of a grid used in the
numerical experiments is presented in Fig. 2. The RANS equations, closed with an eddy-
viscosity model owing to Cebeci and Smith [7], and the boundary conditions are discretized
and solved by the method described in Ref. [10]. After each evaluation, the grid is adapted
using vertical stretching. An initial estimate of the solution on the adapted grid is subse-
quently generated by linear interpolation from the solution on the previous grid. Details of
the discretization method and the setup of the numerical experiments can be found in Ref. [4].
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FIG. 2. Example of a grid used in the numerical experiments. The grid is coarsened for illustration purposes.

Figure 3 shows the wave profile obtained in successive iterations forH = 0.2. The
initial estimate (zeroth iterate) is just the undisturbed free surface. One may note that
the first iterate already displays a qualitatively correct wave profile. This confirms that the
quasi free-surface flow solution is an accurate approximation of the actual free-surface flow
solution. A converged solution is obtained in less than 10 iterations. Owing to the decreasing
computational cost of each iteration (refer to Section 4.3), the entire computation is just
two to three times as expensive as the corresponding fixed domain problem with symmetry
boundary conditions at the undisturbed surface.

Figure 4 displays the pressure defect at the free surface after consecutive iterations. The
results confirm convergence of the method. ForH = 0.15, the average contraction number
isζ ≈ 0.15 and the convergence behavior is indeed independent ofh. After several iterations
the contraction number increases. However, this is entirely due to the fact that the quasi
free-surface flow problem (26) is solved only by approximation. If the tolerance on the
residual of Eq. (26) is reduced (i.e., if Eq. (26) is solved more accurately), then the original
contraction number is recovered. ForH = 0.20, the average contraction number isζ ≈ 0.45
for h = 2−5 andζ ≈ 0.52 for h = 2−6. As a result of strong nonlinearity, the asymptotic
mesh-width independence of the convergence behavior is in this case not yet apparent.

FIG. 3. Wave profile obtained after successive iterations (H = 0.2).
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FIG. 4. Pressure defect at the free surface versus the iteration number forH = 0.15,h = 2−5(h), h = 2−6(s),
andH = 0.20,h = 2−5(+), h = 2−5(e).

A detailed investigation of the convergence behavior of time integration methods for the
test case withH = 0.20 is presented in Ref. [22]. Typically, the time integration method
requires approximately 104 surface adjustments to reduce the initial error by a factor of 10.
The presented method achieves this in approximately four iterations, for a similar setting
of the numerical experiment.

Figure 5 compares the computed wave elevation with measurements from Ref. [5]. In
Ref. [5], a nondimensionalized amplitudea = 4.5× 10−2± 15% and wavelength

FIG. 5. Computed wave elevation forh = 2−6 (solid line) and measurements from Ref. [5] (markers only),
for H = 0.20. The obstacle is located in the intervalx ∈ [0, 2].
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λ = 1.10± 10% are reported for the trailing wave. The trailing wave of the computed
wave elevation on the grid withh = 2−6 displays amplitudea = 6.5× 10−2 and wave-
lengthλ = 1.11. Hence, the computed wavelength agrees well with the measurements. The
amplitude appears to be overestimated. However, the difference between the amplitude of
the numerical results and of the experimental data is not unusual (see, e.g., Refs. [22, 23]).
Observe also that the difference in the amplitude of the first wave and the second wave is
correctly predicted.

6. CONCLUSION

The usual time-integration method for solving steady free-surface Navier–Stokes flow
problems was shown to be inefficient owing to the specific transient behavior of surface-
gravity waves and a CFL condition on the allowable time step.

Motivated by the demand for efficient computational methods in practical applications,
we proposed a new iterative-solution method. The method alternatingly solves the steady
Navier–Stokes equations with a quasi free-surface condition imposed at the free surface,
and adjusts the free surface using the computed solution and the normal dynamic condition.

Examination of the convergence properties of the iterative method revealed that the
method uses the quasi free-surface condition to ensure that the disturbance induced by
the displacement of the boundary is small. It was shown that the convergence behavior of
the method is asymptotically independent of the mesh width. The asymptotic computational
complexity of the iterative method deteriorates only moderately with decreasing mesh width.
Mesh-width independence of the computational complexity can be achieved by means of
nested iteration.

Numerical results were presented for two-dimensional flow over an obstacle in a channel.
For the presented test cases, a converged solution was obtained in at most 10 iterations. The
numerical results agree well with measurements. The numerical experiments confirmed that
the convergence behavior of the method is asymptotically independent of mesh width.

We believe that the proposed method will be useful in ship hydrodynamics, hydraulics,
and other fields of application in which the efficient computation of steady free-surface
flows at high Reynolds number is required.
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